Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:
Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаётся скалярное произведение векторов в касательном пространстве. Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.
Метрический тензор позволяет определить длины кривых, углы между кривыми, объём и другие понятия свойственные евклидову пространству. В частном случае поверхности метрика также называется первой квадратичной формой.
В общей теории относительности метрика рассматривается в качестве фундаментального физического поля (гравитационного) на четырехмерном многообразии физического пространства-времени. Широко используется и в других построениях теоретической физики, в частности, в биметрических теориях гравитации на пространстве-времени рассматривают сразу две метрики.
Далее в формулах этой статьи с повторяющимися индексами везде подразумевается суммирование по правилу Эйнштейна, то есть по каждому повторяющемуся индексу.